object Distributions
Convenience DSL objects for building different kinds of distributions.
- Alphabetic
- By Inheritance
- Distributions
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##(): Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def constant(value: BigInteger): Distribution[BigInteger]
A constant distribution for big integer values
A constant distribution for big integer values
- value
the value to return on every sample
- returns
a new distribution object
- def constant(value: Duration): Distribution[Long]
A constant distribution for duration values
A constant distribution for duration values
Is translated internally to a long distribution of millisecond values.
- value
the value to return on every sample
- returns
a new distribution object
- def constant(value: Long): Distribution[Long]
A constant distribution for long values
A constant distribution for long values
- value
the value to return on every sample
- returns
a new distribution object
- def constant(value: Double): Distribution[Double]
A constant distribution for double values
A constant distribution for double values
- value
the value to return on every sample
- returns
a new distribution object
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exponential(mean: BigInteger)(implicit random: Random): Distribution[BigInteger]
An exponential distribution over big integer values
An exponential distribution over big integer values
- mean
the mean sample value
- returns
a new distribution object
- def exponential(mean: Duration)(implicit random: Random): Distribution[Long]
An exponential distribution over duration values
An exponential distribution over duration values
Is translated internally to a long distribution of millisecond values.
- mean
the mean sample value
- returns
a new distribution object
- def exponential(mean: Long)(implicit random: Random): Distribution[Long]
An exponential distribution over long values
An exponential distribution over long values
- mean
the mean sample value
- returns
a new distribution object
- def exponential(mean: Double)(implicit random: Random): Distribution[Double]
An exponential distribution over double values
An exponential distribution over double values
- mean
the mean sample value
- returns
a new distribution object
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def intSeq(start: Int): Distribution[Integer]
A natural sequence where sampling always returns the next value
A natural sequence where sampling always returns the next value
The first returned value is
start
and then it's alwaysprevious+1
- start
the beginning of the sequence
- returns
a new distribution object
- def intSeq(range: Range): Distribution[Integer]
A concrete sequence where sampling always returns the next value
A concrete sequence where sampling always returns the next value
- range
the range of integers to sample from
- returns
a new distribution object
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def normal(mean: BigInteger, variance: BigInteger)(implicit random: Random): Distribution[BigInteger]
A normal distribution over big integer values
A normal distribution over big integer values
- mean
the mean sample value
- variance
the variance of sampled values
- returns
a new distribution object
- def normal(mean: Duration, variance: Long)(implicit random: Random): Distribution[Long]
A normal distribution over duration values
A normal distribution over duration values
Is translated internally to a long distribution of millisecond values.
- mean
the mean sample value
- variance
the variance of sampled values
- returns
a new distribution object
- def normal(mean: Long, variance: Long)(implicit random: Random): Distribution[Long]
A normal distribution over long values
A normal distribution over long values
- mean
the mean sample value
- variance
the variance of sampled values
- returns
a new distribution object
- def normal(mean: Double, variance: Double)(implicit random: Random): Distribution[Double]
A normal distribution over double values
A normal distribution over double values
- mean
the mean sample value
- variance
the variance of sampled values
- returns
a new distribution object
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uniform(numBits: Int)(implicit random: Random): Distribution[BigInteger]
A uniform distribution over big integer values
A uniform distribution over big integer values
- numBits
the number of random bits to generate for each sample
- returns
a new distribution object
- def uniform(min: BigInteger, max: BigInteger)(implicit random: Random): Distribution[BigInteger]
A uniform distribution over big integer values
A uniform distribution over big integer values
- min
the lower bound for sample values
- max
the upper bound for sample values
- returns
a new distribution object
- def uniform(min: Duration, max: Duration)(implicit random: Random): Distribution[Long]
A uniform distribution over duration values
A uniform distribution over duration values
Is translated internally to a long distribution of millisecond values.
- min
the lower bound for sample values
- max
the upper bound for sample values
- returns
a new distribution object
- def uniform(min: Long, max: Long)(implicit random: Random): Distribution[Long]
A uniform distribution over long values
A uniform distribution over long values
- min
the lower bound for sample values
- max
the upper bound for sample values
- returns
a new distribution object
- def uniform(min: Double, max: Double)(implicit random: Random): Distribution[Double]
A uniform distribution over double values
A uniform distribution over double values
- min
the lower bound for sample values
- max
the upper bound for sample values
- returns
a new distribution object
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])