object Distributions
Convenience DSL objects for building different kinds of distributions.
- Alphabetic
- By Inheritance
- Distributions
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##(): Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
 
-    def constant(value: BigInteger): Distribution[BigInteger]A constant distribution for big integer values A constant distribution for big integer values - value
- the value to return on every sample 
- returns
- a new distribution object 
 
-    def constant(value: Duration): Distribution[Long]A constant distribution for duration values A constant distribution for duration values Is translated internally to a long distribution of millisecond values. - value
- the value to return on every sample 
- returns
- a new distribution object 
 
-    def constant(value: Long): Distribution[Long]A constant distribution for long values A constant distribution for long values - value
- the value to return on every sample 
- returns
- a new distribution object 
 
-    def constant(value: Double): Distribution[Double]A constant distribution for double values A constant distribution for double values - value
- the value to return on every sample 
- returns
- a new distribution object 
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def exponential(mean: BigInteger)(implicit random: Random): Distribution[BigInteger]An exponential distribution over big integer values An exponential distribution over big integer values - mean
- the mean sample value 
- returns
- a new distribution object 
 
-    def exponential(mean: Duration)(implicit random: Random): Distribution[Long]An exponential distribution over duration values An exponential distribution over duration values Is translated internally to a long distribution of millisecond values. - mean
- the mean sample value 
- returns
- a new distribution object 
 
-    def exponential(mean: Long)(implicit random: Random): Distribution[Long]An exponential distribution over long values An exponential distribution over long values - mean
- the mean sample value 
- returns
- a new distribution object 
 
-    def exponential(mean: Double)(implicit random: Random): Distribution[Double]An exponential distribution over double values An exponential distribution over double values - mean
- the mean sample value 
- returns
- a new distribution object 
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
 
-    def intSeq(start: Int): Distribution[Integer]A natural sequence where sampling always returns the next value A natural sequence where sampling always returns the next value The first returned value is startand then it's alwaysprevious+1- start
- the beginning of the sequence 
- returns
- a new distribution object 
 
-    def intSeq(range: Range): Distribution[Integer]A concrete sequence where sampling always returns the next value A concrete sequence where sampling always returns the next value - range
- the range of integers to sample from 
- returns
- a new distribution object 
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def normal(mean: BigInteger, variance: BigInteger)(implicit random: Random): Distribution[BigInteger]A normal distribution over big integer values A normal distribution over big integer values - mean
- the mean sample value 
- variance
- the variance of sampled values 
- returns
- a new distribution object 
 
-    def normal(mean: Duration, variance: Long)(implicit random: Random): Distribution[Long]A normal distribution over duration values A normal distribution over duration values Is translated internally to a long distribution of millisecond values. - mean
- the mean sample value 
- variance
- the variance of sampled values 
- returns
- a new distribution object 
 
-    def normal(mean: Long, variance: Long)(implicit random: Random): Distribution[Long]A normal distribution over long values A normal distribution over long values - mean
- the mean sample value 
- variance
- the variance of sampled values 
- returns
- a new distribution object 
 
-    def normal(mean: Double, variance: Double)(implicit random: Random): Distribution[Double]A normal distribution over double values A normal distribution over double values - mean
- the mean sample value 
- variance
- the variance of sampled values 
- returns
- a new distribution object 
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def uniform(numBits: Int)(implicit random: Random): Distribution[BigInteger]A uniform distribution over big integer values A uniform distribution over big integer values - numBits
- the number of random bits to generate for each sample 
- returns
- a new distribution object 
 
-    def uniform(min: BigInteger, max: BigInteger)(implicit random: Random): Distribution[BigInteger]A uniform distribution over big integer values A uniform distribution over big integer values - min
- the lower bound for sample values 
- max
- the upper bound for sample values 
- returns
- a new distribution object 
 
-    def uniform(min: Duration, max: Duration)(implicit random: Random): Distribution[Long]A uniform distribution over duration values A uniform distribution over duration values Is translated internally to a long distribution of millisecond values. - min
- the lower bound for sample values 
- max
- the upper bound for sample values 
- returns
- a new distribution object 
 
-    def uniform(min: Long, max: Long)(implicit random: Random): Distribution[Long]A uniform distribution over long values A uniform distribution over long values - min
- the lower bound for sample values 
- max
- the upper bound for sample values 
- returns
- a new distribution object 
 
-    def uniform(min: Double, max: Double)(implicit random: Random): Distribution[Double]A uniform distribution over double values A uniform distribution over double values - min
- the lower bound for sample values 
- max
- the upper bound for sample values 
- returns
- a new distribution object 
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])